
图片国产 巨乳国产 巨乳 弁言Hello小伙伴们环球好,我是生信时刻树的小学徒”我才不吃蛋黄“。今天是胃癌单细胞数据集GSE163558复现系列第七期。第六期咱们证实TCGA数据库中胃癌和平日胃组织之间的各异抒发基因,界说了每个上皮细胞的恶性和非恶性评分。本期,咱们将分析恶性上皮细胞G0-G4的Marker基因并绘图热图和小提琴图,此外,咱们还将使用AddModuleScore_UCell函数运筹帷幄细胞的增殖和迁徙评分。 1.布景先容细胞增殖是生物体的伏击人命特征,细胞以分裂的神志进行增殖,是生物体滋长、发育、繁衍以及遗传的基础。在肿瘤多阶段演进的早期阶段,肿瘤细胞在原发灶无穷增殖。增殖智商强是肿瘤细胞恶性进程高的伏击标志之一。除了在原发灶增殖,肿瘤还不错发生转机,即肿瘤细胞在隔离其发源部位的器官中滋长,转机是多量肿瘤的最终且最致命的施展。本数据集有多个胃癌转机样本:6名患者的10个极新东谈主体组织样本,包括3个原发性肿瘤样本(PT)、1个把握非肿瘤样本(NT)和6个转机样本(M)。转机样本包括 2个肝脏转机样本(Li)、2个淋趋附转机样本(LN)、1个腹膜转机样本(P)和1个卵巢转机样本(O)。肿瘤细胞迢遥转机的历程如下:肿瘤细胞侵袭力增强;从原发部位冲突血管/淋巴管,干预轮回;从血管再次冲突干预组织定植于迢遥器官,最终在迢遥器官中增殖。在上述历程中,肿瘤细胞具有不同表型,并在肿瘤微环境中,与其周围免疫细胞和基质细胞互相作用,以复旧瘤细胞滋长,并匡助瘤细胞藏匿免疫系统的监视。为了更好的冲突组织和血管内皮,肿瘤细胞会发生上皮-间充质退换(Epithelial-Mesenchymal Transition,EMT),即上皮细胞向间充质细胞表型退换的历程,在EMT发生历程中,肿瘤上皮细胞向间充质细胞退换,施展为细胞花式和功能的双重改造,花式上由多边形或鹅卵石状转造成细长的纺锤状或梭形,功能上细胞极性消失、细胞骨架改造、细胞间去粘连化以及获取侵袭通顺智商等;这些表型改造会使得细胞间黏附度裁汰,迁徙通顺特色增强。使用AddModuleScore_UCell函数运筹帷幄细胞的增殖和迁徙评分,不错协助咱们评估不同恶性上皮亚群的增殖、转机后劲和恶性进程。 2.数据分析2.1 富集分析领先断根系统环境变量,设立责任目次,加载R包,读取恶性上皮Seurat数据: rm(list=ls())getwd()setwd('6-TCGA_STAD/')library(tidyverse)library(tinyarray)library(data.table) library(Seurat)scRNA = readRDS('malignant.rds') 使用Seurat内置函数FindMarkers,以G1为对照,分析恶性上皮细胞各亚群(G0-4)Marker基因: head(scRNA@meta.data)Idents(scRNA) = scRNA$celltypect = levels(scRNA@active.ident)ct1 = c("G3", "G2", "G4", "G0")all_markers = lapply(ct1, function(x){ # x = ct[1] print(x) markers <- FindMarkers(scRNA, group.by = "celltype", logfc.threshold = 0.1, ident.1 = x, ident.2 = ct[5]) #markers_sig <- subset(markers, p_val_adj < 0.1) return(markers)}) 对all_markers的list重定名,然后以“p_val_adj < 0.01”次第筛选各异抒发基因: length(all_markers)names(all_markers) = ct1lapply(all_markers,nrow)all_markers_sig = lapply(all_markers, function(x){ markers_sig <- subset(x, p_val_adj < 0.01)}) 在各异抒发基因的基础上进行富集分析,轮回绘图KEGG和GO荆棘调基因富集条形图: plot = list()for (i in 1:length(all_markers_sig)){ deg = all_markers_sig[[i]] deg$change = 'unknown' deg[deg$avg_log2FC >2,]$change = 'up' deg[deg$avg_log2FC < -2,]$change = 'down' table(deg$change) entrezIDs = bitr(rownames(deg), fromType = "SYMBOL", toType = "ENTREZID", OrgDb= "org.Hs.eg.db", drop = TRUE) gene<- entrezIDs$ENTREZID marker_new = deg[rownames(deg) %in% entrezIDs$SYMBOL,] identical(rownames(marker_new) , entrezIDs$SYMBOL) p = identical(rownames(marker_new) , entrezIDs$SYMBOL);p if(!p) entrezIDs = entrezIDs[match(rownames(marker_new) ,entrezIDs$SYMBOL),] marker_new$ENTREZID = entrezIDs$ENTREZID a = double_enrich(marker_new,n = 5) a plot[[i]] <- a} plot是包含多个富集分析条形图的list,咱们不错别离索求检察,比如检察G3联系于G1(plot[[1]])各异抒发基因的GO富集分析的条形图(G3_G1$gp): G3_G1 = plot[[1]]G3_G1$gp 图片 图片 图片 2.2 绘图基因抒发烧图在这里,咱们取了300个细胞,绘图了'CD63','CLDN4','EGR1'等基因的热图: Idents(scRNA)scRNA1 = scRNAscRNA1 <- ScaleData(scRNA1,features = rownames(scRNA1))cells = subset(scRNA1,downsample=300)##取其中的300个细胞,为了图面子rownames(cells)gene_order <- c('CD63','CLDN4','EGR1','SRGN','VIM','LAPTM5','AGR2','MT1C','S100A6','PLCG2','SAT1','TSPYL2')gene <- factor(gene_order, levels = unique(gene_order))cells2 <- cells[rownames(cells) %in% gene,]df <- as.data.frame(AverageExpression(object = cells2)$RNA)df <- df[gene_order, ]df = na.omit(df)pheatmap(df, cluster_rows = FALSE, cluster_cols = FALSE, show_colnames = TRUE, scale = "row",gaps_row = c(seq(3, 11,3)), gaps_col = c(1:4))ggsave('gene_heatmap.pdf',width = 12,height = 8) 图片 2.3 绘图CD44抒发小提琴图数据准备: 领先索求scRNA中基因抒发矩阵raw.data: raw.data = as.matrix(scRNA@assays$RNA$counts)raw.data[1:6,1:6]length(colnames(raw.data)) 索求CD44抒发数据框data.frame a = scRNA@assays$RNA$datarownames(a)b = as.data.frame(a['CD44',]) colnames(b) = 'CD44'identical(rownames(b),colnames(a)) 设立raw.data列名为celltype名,将raw.data赋值为data: colnames(raw.data) = scRNA$celltypelibrary(ggcorrplot)library(ggthemes)data = raw.datacolnames(data)table(colnames(data)) 图片 创建数据框dat: rownames(data)dat = data.frame(expression = b,group = colnames(data))dat = as.data.frame(dat) 将dat$group设立为因子型变量,再行设立levels律例G0-G4,str函数检察数据框dat变量,na.omit函数删除NA值,数据准备兑现后,使用ggplot绘图小提琴图: dat$group=factor(dat$group, levels = c("G0","G1","G2","G3","G4"))str(dat$group)str(dat$CD44)dat = na.omit(dat)p = ggplot(dat = dat,mapping = aes(x = group,y = CD44)) +geom_violin(scale = "width",adjust =1,trim = TRUE,mapping = aes(fill = group)) + theme_few() +scale_fill_manual(values = mycolors)+ geom_jitter(width = 0.35, size = 1.1, color = "black") + # 添加点,不错调治width和size参数 theme(axis.text.x =element_text(size=20), axis.text.y=element_text(size=20))+ labs(x="",y="Expression Level",title = "CD44")+ theme(plot.title = element_text(hjust = 0.5)) + theme(plot.title = element_text(size=25))+ NoLegend()p 图片 设定参考组,添加显赫性秀气(星号): library(ggpubr)p+stat_compare_means(method = "anova", label.y = 3.5)+ # Add global p-value stat_compare_means(label = "p.signif", method = "t.test", ref.group = "G0") # Pairwise comparison against reference 图片 勾引av我方设定对比,添加显赫性秀气(p值): compaired <- list( c("G0", "G1"), c("G1", "G2"), c("G2", "G3") ,c("G3", "G4"))p + stat_compare_means(comparisons=compaired,method = "t.test") 图片 我方设定对比,添加显赫性秀气(星号): p+geom_signif(comparisons = compaired,step_increase = 0.1,map_signif_level = T,test = t.test) 图片 CD44联系基因抒发烧图(同上): gene_order <- c('CD44','PROM1' ,'LGR5','SOX2','TFRC','CXCR4' ,'JAG1' )gene <- factor(gene_order, levels = unique(gene_order))cells2 <- cells[rownames(cells) %in% gene,]df <- as.data.frame(AverageExpression(object = cells2)$RNA)df <- df[gene_order, ]df = na.omit(df)pheatmap(df, cluster_rows = FALSE, cluster_cols = FALSE, show_colnames = TRUE, scale = "row") 图片 2.4 运筹帷幄增殖和迁徙评分领先,证实原文,界说增殖和迁徙评分list:proliferation = c('MKI67','IGF1','ITGB2','PDGFC','JAG1','PHGDH');migration = c('VIM','SNAI1','MMP9','AREG','ARID5B' ,'FAT1'),然后使用AddModuleScore_UCell函数运筹帷幄评分: library(UCell)proliferation = c('MKI67','IGF1','ITGB2','PDGFC','JAG1','PHGDH')migration = c('VIM','SNAI1','MMP9','AREG','ARID5B' ,'FAT1')marker <- list(proliferation,migration)#将基因整成listnames(marker)[1] <- 'proliferation'names(marker)[2] <- 'migration'score <- AddModuleScore_UCell(scRNA, features=marker) 准备包含增殖/迁徙评分的数据框data(同上),然后绘图小提琴图: raw.data = as.matrix(score@assays$RNA$counts)raw.data[1:6,1:6]length(colnames(raw.data))rownames(score)a = score$proliferation_UCellcolnames(raw.data) = score$celltypelibrary(ggcorrplot)library(ggthemes)data = raw.datacolnames(data)table(colnames(data))b = data.frame(expression = a,group = colnames(data))data = as.data.frame(b)dat$group=factor(dat$group, levels = c("G0","G1","G2","G3","G4"))str(data$group)str(data$expression)data = na.omit(data)p = ggplot(dat = data,mapping = aes(x = group,y = expression)) +geom_violin(scale = "width",adjust =1,trim = TRUE,mapping = aes(fill = group)) + theme_few() +scale_fill_manual(values = mycolors)+ geom_jitter(width = 0.35, size = 1.1, color = "black") + # 添加点,不错调治width和size参数 theme(axis.text.x =element_text(size=20), axis.text.y=element_text(size=20))+ labs(x="",y="Proliferation score")+ theme(plot.title = element_text(hjust = 0.5)) + theme(plot.title = element_text(size=25))+ NoLegend()p 图片 我方设定对比,然后添加显赫性秀气p值: compaired <- list( c("G0", "G1"), c("G1", "G2"), c("G2", "G3") ,c("G3", "G4"))p + stat_compare_means(comparisons=compaired,method = "t.test") 图片 结语本期,咱们分析了恶性上皮细胞G0-G4的Marker基因并绘图热图和小提琴图,并使用AddModuleScore_UCell函数运筹帷幄细胞的增殖和迁徙评分。下一期,咱们将珍重干预单细胞测序高档分析,使用monocle2进行拟时序分析(Pseudo-time analysis)。干货满满,迎接环球捏续追更,谢谢! 图片
本站仅提供存储管事,总共履行均由用户发布,如发现存害或侵权履行,请点击举报。
|